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We obtain the stationary probability distribution functions of the order parameter near onset for the one-
dimensional real Ginzburg-Landau and Swift-Hohenberg equations with a fluctuating control parameter. A
perturbative expansion in the intensity of the fluctuations leads to a hierarchy of Fokker-Planck equations for
conditional probability distribution functions that relate components of the order parameter that evolve in
different time scales. Successive integration leads to a Fokker-Planck equation for the slowest mode, which we
solve analytically for the models studied. In all cases, the probability distribution function above onset is of the

form P(Ao)ocAge’VAg, whereA, is the slow component of the order parameter and the valuesaofd y
depend explicitly on the intensity of the fluctuations. KnowledgePg¢#,) allows the calculation of an
effective bifurcation threshold and of the momentsAgfabove threshold.
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. INTRODUCTION A=B=0 loses stability. Provided that~®(1) there are
] - o _ two different time scales in Eq1). This becomes apparent if
We obtain the reduced probability distribution function 5na introduces a slow time scale= at. and the scaling
near threshold in two models widely used to study pattern_ O(a¥?) and B~0(a®?), with a%l. Then dB/dT

formation in extended systems: the real Ginzburg-Landaqu(as/2)<_)\B+dA3, and therefore the evolution of the

and Swift-Hohenberg equations when the control parametesro called fast variabl® is confined to the center manifold

has a fluctuating component. We allow the control paramete .
g P P m=dA3 X\ over the slow time scal€. As a resultB can be

to have a small component that is periodic in space, bu diabatically eliminated f the d . d B th
random in time. For the real Ginzburg-Landau equation, weadianatically eliminated from the dynamics, an BY.then

also consider variations of the control parameter that are rafeduces to the normal form equation for a pitchfork bifurca-
dom in both space and time. In all three cases, we foculdon: o . i o
exclusively on the one-dimensional case, and recover known FOr large (or infinite)-dimensional systems it is often
results concerning the dependence of the location of the inhore useful to model the effect of the fast variables as ran-
stability threshold as a function of the intensity of the fluc-dom sourcesthe “thermal bath’) [4], and to interpret the
tuations in the control parameter. However, we are also abl@ifurcation as a phase transitiofin the thermodynamic
to obtain analytically the probability distribution of the order limit). However, in the case of pattern forming systems, the
parameter near threshold by systematic elimination of decharacteristic scale of these fluctuations of thermal origin is
grees of freedom. much too small at thémacroscopigenergy scale of the slow
Progress in applying classical bifurcation theory tovariables, and they are usually negligibd. Nevertheless, it
n-dimensional(or infinite dimensional dynamical systems IS often argued that other stochastic effegtst of micro-
often involves the introduction of low-dimensional invariant SCOPIC origin may enter the description of the system that
manifolds (the center manifoldson which the system dis- are related to other degrees of freedom that cannot be com-
plays the essential elements of the bifurcations under studyletely controlled or specifief6,7]. For example, one can
[1-3]. The dynamic evolution off this manifold is treated as imagine that the control parameter for a particular bifurca-
secondary, as in many cases the system of interest deca&@” has a small random component. A case in point is
exponentially fast to the manifold for any initial condition Rayleigh-Beard convection when the temperature control of
that is not on(but close t9 it. Accordingly, the original dy- the bounding solid surfaces is not perfect, and small spatial
namical variables can be classified as fast or slow close t8" temporal inhomogeneities may be present during the ex-
the bifurcation, and the former adiabatically eliminated toP€riment. Although an idealization, it is useful to phenom-

obtain a reduced description valid near the bifurcation. As afghologically model the resulting temperature difference
illustration, consider the following system of equations, ~ @cross the boundaries as a random function of space and

time.

dlA a 0 rpa — A3t We focus in this paper on the case of fluctuations of ex-
—_ }z 0 —\ }Jr 5 (1)  ternal origin that enter the governing equations as random
dt[B B | dA®+--- contributions to the system parameters. In a number of cases

of interest, the existence of random parametric dependence
near the bifurcation pointe=0, where the trivial solution still preserves the essential separation of time scales that al-
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lows a center manifold reduction in the stochastic case, andandau equation with an order parameter that is a random
an analysis along the lines of classical bifurcation theory. Weunction of both space and time in Sec. IV.
elaborate here on earlier work by Knobloch and Wiesenfeld

[8], van den Broeclet al. [9], Xu and Robert$10], and our ||, REAL GINZBURG-LANDAU EQUATION WITH A TIME

own [11] that concerned systems without any spatial depen-  pEPENDENT, SPATIALLY PERIODIC CONTROL

dence. Consider again the system in EL).but now allow PARAMETER

fluctuations in the control parametef+ £(t), whereé(t) is a _ . _ _ _
Gaussian, white process of zero mean and intensifgqua- We first consider the one-dimensional real Ginzburg-

tion (1) now defines a stochastic process for the joint problandau equation in a spatially extended system. Its associ-
ability densityP(A,B;t) at timet. The process of reduction ated amplitude equation is the normal form for a pitchfork
of Eq. (1) to its normal form in the deterministic case moti- bifurcation. Motivated by earlier work by Rier et al. [15],

vates in the stochastic case the decomposition we consider the case in which the control parameter of the
bifurcation is modulated in space with wave numRQemwith
P(A,B;t)=p(B|AH)P(A;L), (2)  anamplitude that is a random function of time. In terms of a

scalar fieldy(x,t) the equation that we study reads,
where p(B|A;t) is the conditional probability density d3

. . - J
given a value ofA. For small «, it is anticipated that —(x,t)=[ a+ &(t)cog QX) Jh(x,t) — cyp®(x,t)
p(B|A;t) andP(A;t) will evolve over different time scales, at
thus allowing their separate determination within a perturba- 5
tive expansion irk. This is reminiscent of the separation of + &—¢(x,t), (3)
time scales in the underlying deterministic problem in that x?

the fluctuations oB occur in a fast scale compared to the
fluctuations inA. Once the equation foP(A;t) has been Wwherea andc>0 are real, and(t) is assumed to be a
obtained after integrating out the fluctuationsBnwe find  Gaussian white process of zero mean and variance
the stationary probability densiti(A), which can then be (&(t)&(t"))=2«48(t—t"). The choiceQ~O(1) allows a
used to determine the location of the effective threshold irseparation of time scales between the fundamental response
the stochastic case, as well as the momentsAaibove (uniform in spacg and harmonic response to the control
threshold. In shortP(A) is a & function atA=0 below parameter modulatioiof wave numberQ, and its higher
threshold, whereas above threshold there exists another ndrarmonics.
malizable solution that has non vanishing moments. In the deterministic limit ofk =0, Eq.(3) admits uniform

We present in this paper the calculation of the probabilitystationary solutions y=0 (stable for «<0) and ¢
distribution function on the center manifold of two widely =+ \/a/c (stable fora>0), the bifurcation point being de-
studied equations that model pattern formation in onefined by «=0. For the special case in whid{t) is a con-
dimensional systems. Our results are an extension of the cadtant, a time dependent solution may be found by consider-
culations of Refs[12-16 that addressed the location of the ing a power series expansion
bifurcation threshold in each of the cases when the control
parameter is random. Although the methodology can be more *
widely applied, we focus solely on the Ginzburg-Landau and Y(x,1)= > Ay(t)cognQx), (4)
Swift-Hohenberg[17] equations in one spatial dimension. n=0
oupled Stochasic cfterental equations, which we solve rel'1ere the ampltudes(1) are proportonal to increasing

. . ' .~ “powers ofa, and hence a mode reduction is possible near

cursively following the approach of Rdfl1]. The approxi-

- . .. onset @—0).
mate p_robablllty Q|strlbutlon functloh on the cen'Fer manlfold' Our analysis of the stochastic case begins with the same
is obtained, and is used to determine the location of the bi-

furcation threshold as a function of the intensity of the fluc- S <Panston of(xt) in power series, with the amplitudes

. : o . A, (t) being stochastic processes in time. We first analyze the
tuations. In general, we find a shift in the location of the . 4 . i
. ase in which only the first two terms of E@) are retained.
onset, and a nonuniversal dependence of the order parameter
0

on the distance away from threshold. Both results are seen coupled system of .ordlnary stochastic differential equa-
. : ions for the two amplitudes follows,
be a consequence of resonant interaction between random-

ness and the fast variables that produces slowly varying con- 3 2

tributions, and hence corrections to the evolution on the un- E{AO} _ Ao }—c Ao+ 3AAY/2 +§[0 1/2}
derlying center manifold. In particular, our results for the dt|A;| |(a—Q?%A; 3AZA,+3A3/4 1 0
location of the bifurcation threshold agree with earlier results

obtained by direct linearization of the equations for the sta- v AO} 5)
tistical moments that were given by Becker and Krapi&i, ALl

and Raleret al.[15]. Sections Il and 1l describe our results

for the Ginzburg-Landau and Swift-Hohenberg equationdNear onset(the location of which is yet unknowna/
when the control parameter is periodic in space and ranke—Q?|<1, suggesting thad, is a slow variable. We now
domly modulated in time. We finally consider the Ginzburg-introduce an expansion in the small amplitude of the noise
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J— K| —

cation threshold with¢, we further assume that and « will &tP(KO t)=—e’—

Jx, and anticipating the magnitude of the shift in the bifur- J [
A

be of the same order at threshold= «/€2, a=ale?, A,

=A/e, andA;=A, /€2, with e<1. These definitions imply R —— —
that Ag>A, and thata~ A3, expressions that are analogous € 5CA0<A1|A0> P(Ao:t)
to those found in the deterministic limit. Expressed in terms o
of the scaled variables, the Fokker-Planck equation that cor- 4 &2 K<K21|Ao> —
responds to Eq(5) reads, € a_KS 4 P(Aost) |, ©
. where
— Kk|— 3ALA
0t7)—_62 —{ a+;)A0_C Kg‘i‘f 20 l) P = + o0 —— o mg
o A= | dmRipu A= o
. kAT J 7 2. 2Ky
te w2l a oA e a=Q e 5 A Keeping the lowest order terms orllyp to O(e?)], Eq. (9)
0 1 reduces to
—3ce?| AZA + | |P| + — (kKAZP — a ||[— k|— —
A n e EOrP(AoiT) =~ €= || at 5| Ag—CAG P(AgT) [,
0
P [ kALA (12)
NI P S ) (6) . _
dAGIA, 2 where we have mtroduged a sIow time scdle €’t. The
solution of Eq.(11) is P(Ag;T)=6(Ag— Vf(T)), where
whereP(Aq,A;;t) is the joint probability density at time B a+«kl2
To lowest ordef O(1)], Eq. (6) reduces to f(T)=

{1+ [(at x2)/CAS — Llext] —2(a+ w12 T]}

and AY is the initial value ofA,. At this order, the slow
szlpl(KﬂKO.t) variableA, effectively satisfies the equation

— = J
17 A;|A ;t)ZT
P1(A1]Ag oA, B
d -
o a2 — R (12)
dT
L (7)
Its evolution is purely deterministic, although the stochastic
modulation has renormalized the linear part of the equation.

Equation(12) also follows by averaging the Langevin equa-
tion for Ay over the fast time scale. Explicitly,

. Ip(Aq] A i)
+KAS pl( 1_| 0
9A;

where we have introduced the decompositipifA,|A;t)
=P(Ao,A1;t)/P(Ag;t), with pi(A;|Ag;t) the conditional
probab!l?ty density ofA; givquO. Therefore the conditiqnal dA, A A3 3A(A2)
probability evolves over a time scale 6¥(1), and atthis ar ¢ 0~ C| Aot o
scale it relaxes to a stationary density given by
1)
<A1§>~<Al><§>+K s =KAO, (14)

o Q2 Q2 -,
Aq|Ag) = \/ exp — A
pl( l| 0) zwmg F{ Zﬁg
o6&

The amplitudeA, follows a Gaussian distribution with zero implying that the correlation oA ¢ itself evolves over the
mean and varianceZ:K_A(Z)/Qz_ At this order, the nonlinear slow time scale. We finally arrive at E¢L2) by combining
terms in the Langevin equation féx, are negligible. the last two equations and noting tH&)A,/A3<1.

We next obtain an equation fd®(Aq;t) by integrating In addition, we can obtain the location of the bifurcation
point by considering the long time, stationary solution of Eq.
(12) or, equivalently, that of Eq(12). We find

+{A6)2, (13

where we have approximated the temporal average over the
fast time scale by an ensemble average. By making use of the
Furutsu-Novikov theorem18,19, we find

: 8

A

Eq. (6) over Kl. Terms involving partial derivatives with
respect toA; vanish, leaving the following equation for
P(Ag;t) a.=—kl2, (15)
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and conclude that the bifurcation point is shifted relative toand

the deterministic threshold=0 by an amount that equals

(A1€), the correlation between the fast variatle and the
noiseé¢. o B
The functional formP(Ag;T) = 8(Ay— Vf(T)) also im-

plies that the termwAy+ kAq/2— CKBO on the right-hand side
of Eq. (9) vanishes in the limiT— . This is consistent with
the observation that, except for an initial transient, both drift
and diffusion terms in that equation are of higher order in

e (O(€"). As a result, the deterministic evolution Af, at

O(€®) becomes stochastic aP(e*). In order to obtain

P(Aq;T) to that order ine, it is now necessary to keep an
additional term in the expansion ¢{x,t), that which has an

amplitudeA,~ O(€?). We note at this point that a systematic
expansion ine can be developed, as successive amplitudes

An(t) in Eq. (4) will be proportional to higher powers af.
At the order we consider now, terms only up Ag will
contribute to the probability density &f,. Equation(3) now
leads to,

Ag ahg

(a— Q%A

Azl L(a—4Q%A;

[ A3+3A0AZ/2+ 3ATA/4+ 3AA5/2
3AZA;+3A34+3A0A A+ 3AA%2

| 3A3A,+3AAZ/2+ 3A2A, 12+ 3A3/4

O

[0 12 07[ A,
+el1 0 12| ALl
0 12 0]lA,

(16)

The coefficients ¢ — Q?) and (@—4Q?) multiplying A; and
A, on the right-hand side of Eq16) are both 0ofO(1). As a

X (A AP AglPg Ay

Equation(17), which is valid toO(€*), contains one more
term than our earlier result Eq9). We do not obtain an
analytical expression for the conditional density

Po(As|Ag,A;), but instead calculate its first moment directly
from the Langevin equation fok,. Explicitly,

A, I Ao(A2 _
e —d<dt2> =e3(—4Q%+ 2a)(A,) — 6530( 02 v +AJ(A)
AZA. AS 2 _
+ez%+e4% +%<§A1>- (18)

U_singthe result14), Eq.(18) leads to the stationary value of
(AzlAg),

—_—— KAO 2
(AzlAg)= 8_QZ+O(6 ). (19

Combining this result with Eqs(10) and (17), we finally
obtain the stationary probability density

2 _ K2 2 K2
P(AO):MAO|4Q (a+ k/2—15«°132Q%)/
2Q% 3k
Xexpg — > 1+ -
K 2Q

This is the main result of this section.
If

AZl. (20)

4Q2 k  15k? _
2\ T2 )T

result, we expect both variables to evolve over the samehen P(A,) is not normalizable, and hence it is not an ad-

(fash time scale. We first obtain from E¢16) the Fokker-

missible solution. In this rang®(Ag) = 8(Ao) is the only

Planck equation satisfied by the joint probability densitysolution. On the other hand?(A,) has nonzero moments

P(Ag,A1,A2;1) =P(Ag;t) p1(As|Ag;t) pa(AzlAg,Agit). In-
tegration of that equation over both, and A, then yields
the reduced equation

— K|— K(AglA
a+;)A0—CK30+62<+|0>

— J
atP<Ao;t>=—e2:‘
IR,

e SAR PR |

2
s 2
=

K(A2|Ag) }

2 PAgit) (17)

where

K2:A2/€3

(and is normalizable with

_ [2Q%c(1+3k/2Q%)/k*]"
B I'(v) '

K2

2Q2( K 15K2) 1
CZ+§—

3002 " 2

4Q2( K 15K2)
— | at+=— >—1.
K

2 2 32Q2
This implies that, to second order in the noise intensitthe
bifurcation occurs at

K 7 K2 21
= §+32Q2. ( )
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2

Note that above threshold(A,) is not Gaussian, but has a _ _ [ AF )
dominant power law contribution at smal,, and even Ao a=5Cl 5 FALFAT I FALA L] 1A
an integrable divergence in the range.,=a<-—«/2 AL

+15«%/32Q2. Moments of the distribution near threshold d {a—Q%(2k+Q)%A 4

grow as a power law o€, but with nonuniversal exponents dt Aal = {a—Q%(2k—Q)%}A_,
that depend on the intensity of the fluctuations. Keeping Az {a—16Q2(k+Q)2}A
higher orders ire in the expansion ofs [Eq. (4)], and in the | A, ) ) 2
resulting Fokker-Planck equatidf), is not expected to lead L {@—16Q%(k—Q)FA_, J
to qualitative changes in the result just presented, (EQ). "0 1 1 0 O1[ Ap"
We only expect higher order corrections to the threshold lo-
cation Eq.(21). ¢ 10010 A+a
We finally mention that the result for the bifurcation +=-11 0 0 0 1 A_; | +NL,
threshold Eq(21), agrees with that obtained by BReret al. 2 0100 0 A.,
[15] by a different method.
| 0 0 1 0 OJ]LA ]

(24)

. SWIFT-HOHENBERG EQUATION WITH A TIME . .
DEPENDENT CONTROL PARAMETER where NL stands for additional nonlinear terms that do not

affect the results presented below. Provided th&Q?|k
+Q|<1 anda/Q?2k+Q|<1, A, evolves over a longer

forming systems. We consider in this section a modified ; _
one-dimensional  stochastic ~ Swift-Hohenberg equatioricill;rffli(éf’ﬁi)l’g:tzge E&Aéo?ﬁééggﬁdé;é'ég)kﬁéﬁ Planck
[17,20-22 equation that results from E¢R4). Since the derivation fol-
lows closely that of Sec. I, details are omitted below. As was
the case in the Ginzburg-Landau equation, we assume the
scalings k~a~O(€?),Ag~ O(€),A;~O(€?),A~O(€%)
(X, t)—cyp(x,t) and first integrate the Fokker-Planck equation o&%gp and
A_,. To O(1), this yields an equation for the reduced den-

Sit A.q1,A_1]|Ap). Its stationary solution on the fast
) px,DCOI Q), @2 o Pih AR Y

2 4 42 2. 2
where (£(t)£(t'))=2x5(t—t'). In the deterministic limit (A A 1Ay = |2k 9V - AKHQ)
x=0, the stationary solutiofy=0 is stable for negative val- 472 k2 Agk? 8kAK>

ues ofa, while for >0 a periodic solution of wave number 2 o a2
g is obtained such that the mode=k is the fastest growing X[(2k+Q)*(4k™+ QA% +(2k
mode in the linear regime above thresho[d/(x,t) —Q)2(4k2+Q2)A2_1
~A(t)coskx) when 0< @<1]. In Eq.(22), the base solution

couples to the imposed modulation of the control parameter s s
&(t)cosQX), and additional modes of wave numbér —2(4k"= Q)AL 1A 4]
+nQ(n intege) are excited. This suggests the following ex-

pansion of the time dependent solution

2\ 2

& -_—
E lﬁ(X,t) -

a—(kz-i—

NG

. (25

The conditional probability density &, ; (resp.A_;) given
Ay, but independent oA _; (resp.A, ) is given by

P(x,0)= > Ay (t)cog(k+nQ)x], (23 o
n=-e P-(AL1|Ag) = Jloo dA;1p1(A+1,A_1|Ag)

2Q%(2k=Q)?
where the[A,,} are random processes in time, and we antici- = a2
TKRAQ

pate thatA,/A,_1<1 for small k. We first truncate the se-
ries at|n|=2. Inserting the resulting expansion in Eg§2) 2Q%(2k+ Q)2
and grouping terms according to their periodicity yields the X xr{ -
set of equations

A2 |. (26

KAS
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This expression implies that, to a first approximatién,;  of Eq. (24) are no longer of9(1). In that caseA, andA.

and A_, satisfy the Langevin equationsdA.;/dt  (orA.,) evolve over similar time scales and the elimination
Q%(2k+=Q)?A.;+EAq2  that  define  Ornstein- procedure will fail.

Uhlenbeck processes. Since the same néisg appears in The threshold for instability can be again found from the

the equations foA, ; andA_, both variables remain corre- requirement thaP(A,) be normalizable. In Eq(29), this

lated andp; (A 1,A_1|Ag)# P+ (AL 1|Ag)P-(A_1|Ag). The  amounts to requiring thad>—1, a condition that gives as

equation satisfied by (Ay) is now obtained by integrating bifurcation threshold

the original Fokker-Planck equation ovéy., and A.;.

Keeping terms up t@(e*), we find ’ x2(k?+Q?)

0= —ezi[
dAqg

3 3 _ _
- ZCKBO_ GZEC(<K?+1|AO>+<K2—1|AO>

A= 2 12&32(k2_Q2)2
. k2(16k*+ Q%
4Q2%(4k?—Q?)2(4k?+Q?)

— K|— K — — o _
(aAo+;)Ao+fzz(<A+z|Ao>+<A2|Ao>)

(30

The bifurcation threshold is shifted relative to the determin-

L o istic case by an amount that depends on the intensity of the
+{A1A_1|Ap)) [P(Ag) stochastic modulatior and the wave numbe®.
2 IV. GINZBURG-LANDAU EQUATION WITH SPATIAL
+et a2a R+ A AP(Ag) |, (27) AND TEMPORAL RANDOMNESS IN THE CONTROL
0 PARAMETER

where the scaled variables are defined as in Sec. Il. EXx- We now consider the case in which the control parameter
pressed in the original set of variables, the solution to thaky has a random component in both space and time. We re-

equation readfto O(e?)], strict our study to the Ginzburg-Landau equation but expect
a similar analysis to hold for the Swift-Hohenberg equation.
P(Ag) = o(Ao— 8(a) V4l a+ k/2]/3c), (28)  gpecifically, we consider the equation
wheref(a)=1 if a>—«/2 andf(a)=0 otherwise. P 52
At this order, the evolution oA, is deterministic, with —y(x,)=[a+ g(x,t)]w(x,t)—cw3(x,t)+—2w(x,t),
coefficients that depend on the intensity of the modulation. IX
As was the case in Sec. Il, the evolutionAyf is stochastic at (32)

higher orders ire. At O(e*) we find
where ¢>0 and (&(x,t)é(x',t'))=2k8(x—x")S8(t—t").

P(AO):MAO|§GXF[_7AS]1 (29) Since the stochastic modulation excites a response over a
range of length scales/(x,t) cannot be adequately de-
where scribed by a small number of modes as was the case in pre-
vious examples. However, a connection with these earlier
4Q%(4k*—Q?)%(4k?+Q?) K x?(k?+Q?) cases can be established by introducing a Fourier transform
= 2 A A A 5 a2 (22 on a lattice. After discretizing Eq31) on a uniform lattice
(16" + Q%) 1280%(k*= Q%) with N sites and spacing\x, and introducing the discrete
K2(16k4+ Q%) Fourier transform, we find a set &f equations for the Fou-

rier coefficients

 2Q%(4K2—Q?)2(4K*+Q?) |

di, ~ c ~ o~ o~
and d—tq=(a—q2)l//q— INE kEk i, ¥, ¥q-k, -k,
1:%2
2 2_N2\2 2 2
- 3cQ7(4k —Q)“(4k+Q?) 1 N2 o
212164+ Q%) +3 120 % g6l a0y, | (32
K | 2(4Kk*+Q%)%+ (4k*—Q?)?
X 1+2Q2 (4K 0%)2(4kP+ OP) : where gy =3"¢'el**, and where the wave numbgrcan

adopt the valueq 0,227/NAX, £ 27/NAX, . .., = 7lAX,
and summation ovek,k; andk, includes all possible wave

: : tors within the Brillouin zone. The resulting variance of
= kAy/64Q%(k+Q)? that can be obtained by averaging the vec . . . . .
Langevin equations foA_.,. Our result manifestly breaks the noise on the discretized lattice |$§m(t)§n(t )
down when|k|—Q or |2k|—Q, i.e., when the coefficients = (2«/AX) 3y nd(t—1'). Since y; is real, =y . The
a—Q%(2k+Q)? or a—16Q?(k+ Q)2 on the right-hand side equation forys, is

In order to obtain Eq(29), we have used the resylA. )
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dy 5 c o equation for a pitchfork bifurcation with multiplicative noise,
—O:ou/; —— > U Uk and it is known that the bifurcation threshold occurs when
dt 0 2 ki Pk ¥ —ky—ky o .
N ka the coefficient of the linear term changes sjg83,24],
N—-1 §
I P ~R
+ | pot2 cogjkAx K
20 N o go [cog] )by =5 37)
+sin(jkAx)?ZL] ' (33 This result is in agreement with RefL3].

We finally mention that it is also possible to use the
adiabatic reduction procedure presented above to derive

expressions for the probability densi®({iq})=P(o)p

(¥R} o). The calculation, which is similar to that of Sec.
~R II, yields the expressions

dy, ~ c ~ o~ ~
_dtq = (=)~ 2 [P, Wi, ¥g- k)"
N kl’kz - - + o0 + oo - - -
N-1 pq(‘/’?”‘/’o):f f H d'ﬂkp({‘//kRéloHl//o)
& . - - k#q
+]2=:O Ncos(]qAx)

NAXo? NAXG® ~o))
~ ~ - = ~> _exg — ~2 (‘»[/q') (38
X o+2. 2, [cos JkAX) i+ sin(KAX) YA 1, wihom Ky

(34) for the fast variables, and

whereas the equations for the real and imaginary p?agts
and J,(q>0) are,

=

and ~ ~ Axc.
P (o) = Mol 02 exr{ ~ 5N’ (39
dTﬂlq 2\ 77! c ~ 7 |
gt == a) i I\ k§<2 [k, P, gk, —k,] where
N—-1
& . Axc | (NAX/26) (a+ kIAX) NAX "
+ >, 2sin(jgAx) = — - —
i=o N N 2N r 2k a+AX '

X Po+2>, [cod jkAX) PR+ sin(jkAx)be]}. The predictions of the reduction scheme have been tested
k=0 numerically by integrating the Ginzburg-Landau equation
(35) [Eqg. (31)] on a one-dimensional lattice with 128 sites, spac-
ing Ax=0.1 and periodic boundary conditions. The integra-
Near the bifurcation/|a— g% <1 for all nonzero wave vec- tion was performed using a first order, explicit algorithm,
tors provided thaNAx~O(1). Therefore discretization in- with time stepAt=0.0005. Initial values for/ at every lat-
troduces a privileged wave vecta=0, that evolves on a tice site were chosen randomly from a uniform distribution
lower time scale than all others. This is a manifestation of then the interval[ 0,0.01]. The numerical results represented by
appearance of ordegfor a uniform solution at sufficiently  solid circles in Fig. 1 were averaged over 50 independent
long times, even in the stochastic case. Therefore the situauns and correspond to the parameter valuesOc=1,
tion is analogoqs to that descr!bed in Secs. Il and Ill, and W, ,.=0.001. The figure ShOW$)(|~z,/f§|), the probability
anticipate a shift in the location of the onset that can be . ~R ~ . ~Rh _ ~. /~R
directly attributed to statistical correlation between thedens'ty~ . f’q f‘ir any Yo, 1€, p(|'f/’q|)_2p(‘/’q)
noise and the Fourier amplitudes of the fast variables=4J 5 dioP (o) pg(¥/5] o). The solid lines correspond to
(g#0). This can be easily shown by averaging out the faspredictions from Eqs(40) and(41) for three different wave
variables from the equation fak,. From Eqgs(34) and(35), numbers. The discrepancy between the two sets of results

. . ~R increases slightly witlg, in spite of the fact that our assump-
and the Furutsu-Novikov _theorem, we findyi¢;) tion of adiabaticity is in principle more accurate qsin-

~ (kINAX) cos{kAX)gp and (¥4&)~(k/NAX)sin(kAX)io,  creases. The reason is that discretization errors in the numeri-
leading to cal solution become more severe with increasmmgAs
_ shown by the dotted line in Fig. 1, the discrepancy is elimi-

dio [ ot K nated by simply replacing the factgf in the expression for

dt | ¢ Ax Pa(#4110) by — (2/Ax?)[cos@AX)—1], the latter expression
being the discrete Fourier transform of the Laplacian opera-

where¢’ =X, /N, and we have retained only the dominant tor in the nearest neighbor approximatighe same discreti-
nonlinear term in Eq(33). Equation(36) is the normal form  zation used in the numerical integratjon

B
o~ ml/fﬁf (t) o, (36)
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Planck equations for conditional probability distributions
that relate components of the order parameter field.,
Fourier modepsthat evolve over different characteristic time
scales. In the three cases studied, recursive integration of the
equations governing the evolution of the conditional prob-
ability distribution functions leads to an effective equation
for the evolution of the slowest modi,.

We show that, depending on the order of the expansion,
the evolution ofA, can be either deterministic with renor-
malized coefficientqdthe lowest order or stochastic. The
stationary solution for the probabilit (Ay) reveals that the
bifurcation remains sharfi.e., randomness in the control
parameter does not lead to an imperfect bifurcatibat at a
value of the deterministic control parameter that is shifted by
an amount proportional te& at lowest order. In addition,
statistical moments ok grow as a power law of the distance
A away from threshold, but with an exponent that depends ex-
plicitly on «.

We finally note that the shift in the location of the bifur-
cation threshold originates from statistical correlations be-
tween the fast variables that are eliminated and the random
component of the control parameter. For example, in the case
of the Swift-Hohenberg equation, the result=— «/2 fol-
lows immediately from the equation fak, [Eq. (24)] ne-
glecting terms proportional t8..,, and replacindA, ;¢ and
V. DISCUSSION A_1¢ by their statistical average. A similar conclusion is
reached for the Ginzburg-Landau equation.

FIG. 1. Order parameter probability distribution function
p(|~1p§|) obtained either from Eq$38) and(39) (solid line9, or by
numerical integration of Eq31) (symbols. Three different values
of g are shown, from top to bottongy=387/NAX,q=167/NAX
andq=8=/NAx. The dotted line is obtained by replaciggin the
expression fop,(¥R| o) by —(2/Ax?)[cos@ AX)—1].

A reduction procedure similar in spirit to a center mani-
fold reduction can be developed for systems in which the
control parameter is stochastically modulated provided that
the intensityx of the fluctuating component is small. A per-  This research has been supported by the U.S. Department
turbation expansion inc leads to a hierarchy of Fokker- of Energy, Contract No. DE-FG05-95ER14566.
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