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Adiabatic elimination and reduced probability distribution functions in spatially extended systems
with a fluctuating control parameter
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We obtain the stationary probability distribution functions of the order parameter near onset for the one-
dimensional real Ginzburg-Landau and Swift-Hohenberg equations with a fluctuating control parameter. A
perturbative expansion in the intensity of the fluctuations leads to a hierarchy of Fokker-Planck equations for
conditional probability distribution functions that relate components of the order parameter that evolve in
different time scales. Successive integration leads to a Fokker-Planck equation for the slowest mode, which we
solve analytically for the models studied. In all cases, the probability distribution function above onset is of the

form P(A0)}A0
de2gA0

2
, whereA0 is the slow component of the order parameter and the values ofd and g

depend explicitly on the intensity of the fluctuations. Knowledge ofP(A0) allows the calculation of an
effective bifurcation threshold and of the moments ofA0 above threshold.

DOI: 10.1103/PhysRevE.64.026120 PACS number~s!: 02.50.Ey, 05.40.Ca
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I. INTRODUCTION

We obtain the reduced probability distribution functio
near threshold in two models widely used to study patt
formation in extended systems: the real Ginzburg-Lan
and Swift-Hohenberg equations when the control param
has a fluctuating component. We allow the control param
to have a small component that is periodic in space,
random in time. For the real Ginzburg-Landau equation,
also consider variations of the control parameter that are
dom in both space and time. In all three cases, we fo
exclusively on the one-dimensional case, and recover kn
results concerning the dependence of the location of the
stability threshold as a function of the intensity of the flu
tuations in the control parameter. However, we are also a
to obtain analytically the probability distribution of the ord
parameter near threshold by systematic elimination of
grees of freedom.

Progress in applying classical bifurcation theory
n-dimensional~or infinite dimensional! dynamical systems
often involves the introduction of low-dimensional invaria
manifolds ~the center manifolds! on which the system dis
plays the essential elements of the bifurcations under s
@1–3#. The dynamic evolution off this manifold is treated
secondary, as in many cases the system of interest de
exponentially fast to the manifold for any initial conditio
that is not on~but close to! it. Accordingly, the original dy-
namical variables can be classified as fast or slow clos
the bifurcation, and the former adiabatically eliminated
obtain a reduced description valid near the bifurcation. As
illustration, consider the following system of equations,

d

dt FA

BG5Fa 0

0 2lG FA

BG1F2cA31•••

dA31•••

G ~1!

near the bifurcation pointa50, where the trivial solution
1063-651X/2001/64~2!/026120~8!/$20.00 64 0261
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A5B50 loses stability. Provided thatl;O(1) there are
two different time scales in Eq.~1!. This becomes apparent
one introduces a slow time scaleT5at, and the scalingA
;O(a1/2) and B;O(a3/2), with a!1. Then dB/dT
;O(a5/2)!2lB1dA3, and therefore the evolution of th
so called fast variableB is confined to the center manifol
Bcm5dA3/l over the slow time scaleT. As a result,B can be
adiabatically eliminated from the dynamics, and Eq.~1! then
reduces to the normal form equation for a pitchfork bifurc
tion.

For large ~or infinite!-dimensional systems it is ofte
more useful to model the effect of the fast variables as r
dom sources~the ‘‘thermal bath’’! @4#, and to interpret the
bifurcation as a phase transition~in the thermodynamic
limit !. However, in the case of pattern forming systems,
characteristic scale of these fluctuations of thermal origin
much too small at the~macroscopic! energy scale of the slow
variables, and they are usually negligible@5#. Nevertheless, it
is often argued that other stochastic effects~not of micro-
scopic origin! may enter the description of the system th
are related to other degrees of freedom that cannot be c
pletely controlled or specified@6,7#. For example, one can
imagine that the control parameter for a particular bifurc
tion has a small random component. A case in point
Rayleigh-Bénard convection when the temperature control
the bounding solid surfaces is not perfect, and small spa
or temporal inhomogeneities may be present during the
periment. Although an idealization, it is useful to pheno
enologically model the resulting temperature differen
across the boundaries as a random function of space
time.

We focus in this paper on the case of fluctuations of
ternal origin that enter the governing equations as rand
contributions to the system parameters. In a number of ca
of interest, the existence of random parametric depende
still preserves the essential separation of time scales tha
©2001 The American Physical Society20-1
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FRANÇOIS DROLET AND JORGE VIÑALS PHYSICAL REVIEW E 64 026120
lows a center manifold reduction in the stochastic case,
an analysis along the lines of classical bifurcation theory.
elaborate here on earlier work by Knobloch and Wiesenf
@8#, van den Broecket al. @9#, Xu and Roberts@10#, and our
own @11# that concerned systems without any spatial dep
dence. Consider again the system in Eq.~1! but now allow
fluctuations in the control parametera1j(t), wherej(t) is a
Gaussian, white process of zero mean and intensityk. Equa-
tion ~1! now defines a stochastic process for the joint pr
ability densityP(A,B;t) at time t. The process of reduction
of Eq. ~1! to its normal form in the deterministic case mo
vates in the stochastic case the decomposition

P~A,B;t !5p~BuA;t !P~A;t !, ~2!

where p(BuA;t) is the conditional probability density ofB
given a value ofA. For small k, it is anticipated that
p(BuA;t) andP(A;t) will evolve over different time scales
thus allowing their separate determination within a pertur
tive expansion ink. This is reminiscent of the separation
time scales in the underlying deterministic problem in th
the fluctuations ofB occur in a fast scale compared to th
fluctuations inA. Once the equation forP(A;t) has been
obtained after integrating out the fluctuations inB, we find
the stationary probability densityP(A), which can then be
used to determine the location of the effective threshold
the stochastic case, as well as the moments ofA above
threshold. In short,P(A) is a d function at A50 below
threshold, whereas above threshold there exists another
malizable solution that has non vanishing moments.

We present in this paper the calculation of the probabi
distribution function on the center manifold of two wide
studied equations that model pattern formation in o
dimensional systems. Our results are an extension of the
culations of Refs.@12–16# that addressed the location of th
bifurcation threshold in each of the cases when the con
parameter is random. Although the methodology can be m
widely applied, we focus solely on the Ginzburg-Landau a
Swift-Hohenberg@17# equations in one spatial dimensio
We first reduce the evolution close to threshold to a se
coupled stochastic differential equations, which we solve
cursively following the approach of Ref.@11#. The approxi-
mate probability distribution function on the center manifo
is obtained, and is used to determine the location of the
furcation threshold as a function of the intensity of the flu
tuations. In general, we find a shift in the location of t
onset, and a nonuniversal dependence of the order param
on the distance away from threshold. Both results are see
be a consequence of resonant interaction between rand
ness and the fast variables that produces slowly varying c
tributions, and hence corrections to the evolution on the
derlying center manifold. In particular, our results for t
location of the bifurcation threshold agree with earlier resu
obtained by direct linearization of the equations for the s
tistical moments that were given by Becker and Kramer@13#,
and Röderet al. @15#. Sections II and III describe our resul
for the Ginzburg-Landau and Swift-Hohenberg equatio
when the control parameter is periodic in space and r
domly modulated in time. We finally consider the Ginzbur
02612
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Landau equation with an order parameter that is a rand
function of both space and time in Sec. IV.

II. REAL GINZBURG-LANDAU EQUATION WITH A TIME
DEPENDENT, SPATIALLY PERIODIC CONTROL

PARAMETER

We first consider the one-dimensional real Ginzbu
Landau equation in a spatially extended system. Its ass
ated amplitude equation is the normal form for a pitchfo
bifurcation. Motivated by earlier work by Ro¨der et al. @15#,
we consider the case in which the control parameter of
bifurcation is modulated in space with wave numberQ, with
an amplitude that is a random function of time. In terms o
scalar fieldc(x,t) the equation that we study reads,

]

]t
c~x,t !5@a1j~ t !cos~Qx!#c~x,t !2cc3~x,t !

1
]2

]x2
c~x,t !, ~3!

where a and c.0 are real, andj(t) is assumed to be a
Gaussian white process of zero mean and varia
^j(t)j(t8)&52kd(t2t8). The choiceQ;O(1) allows a
separation of time scales between the fundamental resp
~uniform in space!, and harmonic response to the contr
parameter modulation~of wave numberQ, and its higher
harmonics!.

In the deterministic limit ofk50, Eq.~3! admits uniform
stationary solutions c50 ~stable for a<0) and c
56Aa/c ~stable fora.0), the bifurcation point being de
fined bya50. For the special case in whichj(t) is a con-
stant, a time dependent solution may be found by consi
ing a power series expansion

c~x,t !5 (
n50

`

An~ t !cos~nQx!, ~4!

where the amplitudesAn(t) are proportional to increasing
powers ofa, and hence a mode reduction is possible n
onset (a→0).

Our analysis of the stochastic case begins with the sa
expansion ofc(x,t) in power series, with the amplitude
An(t) being stochastic processes in time. We first analyze
case in which only the first two terms of Eq.~4! are retained.
A coupled system of ordinary stochastic differential equ
tions for the two amplitudes follows,

d

dt FA0

A1
G5F aA0

~a2Q2!A1
G2cF A0

313A0A1
2/2

3A0
2A113A1

3/4G1jF0 1/2

1 0 G
3FA0

A1
G . ~5!

Near onset~the location of which is yet unknown! a/
ua2Q2u!1, suggesting thatA0 is a slow variable. We now
introduce an expansion in the small amplitude of the no
0-2
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ADIABATIC ELIMINATION AND REDUCED . . . PHYSICAL REVIEW E 64 026120
Ak, and anticipating the magnitude of the shift in the bifu
cation threshold withk, we further assume thata andk will

be of the same order at threshold:k̄5k/e2, ā5a/e2, Ā0

5A0 /e, andĀ15A1 /e2, with e!1. These definitions imply
that A0@A1 and thata;A0

2, expressions that are analogo
to those found in the deterministic limit. Expressed in ter
of the scaled variables, the Fokker-Planck equation that
responds to Eq.~5! reads,

] tP52e2
]

]Ā0

H F S ā1
k̄

2
D Ā02cS Ā0

31e2
3Ā0Ā1

2

2
D GPJ

1e4
]2

]Ā0
2 F k̄Ā1

2

4
PG2

]

]Ā1

H F S e2ā2Q21e2
k̄

2
D Ā1

23ce2S Ā0
2Ā11e2

Ā1
3

4
D GPJ 1

]2

]Ā1
2 ~ k̄Ā0

2P!

12e2
]2

]Ā0]Ā1

S k̄Ā1Ā0

2
PD , ~6!

whereP(Ā0 ,Ā1 ;t) is the joint probability density at timet.
To lowest order@O(1)#, Eq. ~6! reduces to

] tp1~Ā1uĀ0 ;t !5
]

]Ā1
FQ2Ā1p1~Ā1uĀ0 ;t !

1k̄Ā0
2 ]p1~Ā1uĀ0 ;t !

]Ā1
G , ~7!

where we have introduced the decompositionp1(Ā1uĀ0 ;t)
5P(Ā0 ,Ā1 ;t)/P(Ā0 ;t), with p1(Ā1uĀ0 ;t) the conditional
probability density ofĀ1 given Ā0. Therefore the conditiona
probability evolves over a time scale ofO(1), and atthis
scale it relaxes to a stationary density given by

p1~Ā1uĀ0!5A Q2

2pk̄Ā0
2

expF2
Q2

2k̄Ā0
2
Ā1

2G . ~8!

The amplitudeĀ1 follows a Gaussian distribution with zer
mean and variances25k̄Ā0

2/Q2. At this order, the nonlinea
terms in the Langevin equation forA1 are negligible.

We next obtain an equation forP(Ā0 ;t) by integrating
Eq. ~6! over Ā1. Terms involving partial derivatives with
respect toĀ1 vanish, leaving the following equation fo
P(Ā0 ;t)
02612
s
r-

] tP~Ā0 ;t !52e2
]

]Ā0
H F S ā1

k̄

2
D Ā02cĀ0

3

2e2
3

2
cĀ0^Ā1

2uĀ0&GP~Ā0 ;t !J
1e4

]2

]Ā0
2 F k̄^Ā1

2uĀ0&
4

P~Ā0 ;t !G , ~9!

where

^Ā1
2uĀ0&5E

2`

1`

dĀ1Ā1
2p1~Ā1uĀ0!5

k̄Ā0
2

Q2
. ~10!

Keeping the lowest order terms only@up to O(e2)#, Eq. ~9!
reduces to

e2]TP~Ā0 ;T!52e2
]

]Ā0
H F S ā1

k̄

2
D Ā02cĀ0

3GP~Ā0 ;T!J ,

~11!

where we have introduced a slow time scaleT5e2t. The
solution of Eq.~11! is P(Ā0 ;T)5d„Ā02Af (T)…, where

f ~T!5
ā1k̄/2

c$11@~ ā1k̄/2!/cĀ0
02

21#exp@22~ ā1k̄/2!T#%
,

and Ā0
0 is the initial value ofĀ0. At this order, the slow

variableA0 effectively satisfies the equation

dĀ0

dT
5~ ā1k̄/2!Ā02cĀ0

3 . ~12!

Its evolution is purely deterministic, although the stochas
modulation has renormalized the linear part of the equat
Equation~12! also follows by averaging the Langevin equ
tion for A0 over the fast time scale. Explicitly,

dA0

dt
5aA02cS A0

31
3A0^A1

2&
2 D 1^A1j&/2, ~13!

where we have approximated the temporal average over
fast time scale by an ensemble average. By making use o
Furutsu-Novikov theorem@18,19#, we find

^A1j&'^A1&^j&1k K dA1

dj L 5kA0 , ~14!

implying that the correlation ofA1j itself evolves over the
slow time scale. We finally arrive at Eq.~12! by combining
the last two equations and noting that^A1

2&A0 /A0
3!1.

In addition, we can obtain the location of the bifurcatio
point by considering the long time, stationary solution of E
~11! or, equivalently, that of Eq.~12!. We find

ac52k/2, ~15!
0-3
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and conclude that the bifurcation point is shifted relative
the deterministic thresholda50 by an amount that equal
^A1j&, the correlation between the fast variableA1 and the
noisej.

The functional formP(Ā0 ;T)5d„Ā02Af (T)… also im-
plies that the termāĀ01k̄Ā0/22cĀ0

3 on the right-hand side
of Eq. ~9! vanishes in the limitT→`. This is consistent with
the observation that, except for an initial transient, both d
and diffusion terms in that equation are of higher order
e (O(e4)). As a result, the deterministic evolution ofA0 at
O(e2) becomes stochastic atO(e4). In order to obtain
P(Ā0 ;T) to that order ine, it is now necessary to keep a
additional term in the expansion ofc(x,t), that which has an
amplitudeA2;O(e3). We note at this point that a systemat
expansion ine can be developed, as successive amplitu
An(t) in Eq. ~4! will be proportional to higher powers ofe.
At the order we consider now, terms only up toA2 will
contribute to the probability density ofA0. Equation~3! now
leads to,

d

dt F A0

A1

A2

G5F aA0

~a2Q2!A1

~a24Q2!A2

G
2cF A0

313A0A1
2/213A1

2A2/413A0A2
2/2

3A0
2A113A1

3/413A0A1A213A1A2
2/2

3A0
2A213A0A1

2/213A1
2A2/213A2

3/4
G

1jF 0 1/2 0

1 0 1/2

0 1/2 0
GF A0

A1

A2

G . ~16!

The coefficients (a2Q2) and (a24Q2) multiplying A1 and
A2 on the right-hand side of Eq.~16! are both ofO(1). As a
result, we expect both variables to evolve over the sa
~fast! time scale. We first obtain from Eq.~16! the Fokker-
Planck equation satisfied by the joint probability dens
P(A0 ,A1 ,A2 ;t)5P(A0 ;t)p1(A1uA0 ;t)p2(A2uA0 ,A1 ;t). In-
tegration of that equation over bothA1 and A2 then yields
the reduced equation

] tP~Ā0 ;t !52e2
]

]Ā0
H F S ā1

k̄

2
D Ā02cĀ0

31e2
k̄^Ā2uĀ0&

4

2e2
3

2
cĀ0^Ā1

2uĀ0&GP~Ā0 ;t !J
1e4

]2

]Ā0
2 F k̄^Ā1

2uĀ0&
4

P~Ā0 ;t !G , ~17!

where

Ā25A2 /e3
02612
t

s

e

and

^Ā2uĀ0&5*2`
` *2`

` dĀ2dĀ1Ā2p1

3~Ā1uĀ0!p2~Ā2uĀ0,Ā1!.

Equation~17!, which is valid toO(e4), contains one more
term than our earlier result Eq.~9!. We do not obtain an
analytical expression for the conditional dens
p2(Ā2uĀ0 ,Ā1), but instead calculate its first moment direct
from the Langevin equation forĀ2. Explicitly,

e3
d^Ā2&

dt
5e3~24Q21e2ā !^Ā2&2e53cS Ā0^Ā1

2&
2

1Ā0
2^Ā2&

1e2
^Ā1

2Ā2&
2

1e4
^Ā2

3&
4

D 1
e2

2
^jĀ1&. ~18!

Using the result~14!, Eq.~18! leads to the stationary value o

^Ā2uĀ0&,

^Ā2uĀ0&5
k̄Ā0

8Q2
1O~e2!. ~19!

Combining this result with Eqs.~10! and ~17!, we finally
obtain the stationary probability density

P~A0!5NuA0u4Q2(a1k/2215k2/32Q2)/k2

3expF2
2Q2c

k2 S 11
3k

2Q2D A0
2G . ~20!

This is the main result of this section.
If

4Q2

k2 S a1
k

2
2

15k2

32Q2D ,21,

then P(A0) is not normalizable, and hence it is not an a
missible solution. In this rangeP(A0)5d(A0) is the only
solution. On the other hand,P(A0) has nonzero moment
~and is normalizable!, with

N5
@2Q2c~113k/2Q2!/k2#n

G~n!
,

n5F2Q2

k2 S a1
k

2
2

15k2

32Q2D 1
1

2G
for

4Q2

k2 S a1
k

2
2

15k2

32Q2D .21.

This implies that, to second order in the noise intensityk, the
bifurcation occurs at

ac52
k

2
1

7k2

32Q2
. ~21!
0-4
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Note that above thresholdP(A0) is not Gaussian, but has
dominant power law contribution at smallA0, and even
an integrable divergence in the rangeac<a,2k/2
115k2/32Q2. Moments of the distribution near thresho
grow as a power law ofe, but with nonuniversal exponent
that depend on the intensity of the fluctuations. Keep
higher orders ine in the expansion ofc @Eq. ~4!#, and in the
resulting Fokker-Planck equation~6!, is not expected to lead
to qualitative changes in the result just presented, Eq.~20!.
We only expect higher order corrections to the threshold
cation Eq.~21!.

We finally mention that the result for the bifurcatio
threshold Eq.~21!, agrees with that obtained by Ro¨der et al.
@15# by a different method.

III. SWIFT-HOHENBERG EQUATION WITH A TIME
DEPENDENT CONTROL PARAMETER

The method described can be extended to a numbe
other model equations that are often used to describe pa
forming systems. We consider in this section a modifi
one-dimensional stochastic Swift-Hohenberg equat
@17,20–22#

]

]t
c~x,t !5Fa2S k21

]2

]x2D 2Gc~x,t !2cc3~x,t !

1j~ t !c~x,t !cos~Qx!, ~22!

where ^j(t)j(t8)&52kd(t2t8). In the deterministic limit
k50, the stationary solutionc50 is stable for negative val
ues ofa, while for a.0 a periodic solution of wave numbe
q is obtained such that the modeq5k is the fastest growing
mode in the linear regime above threshold@c(x,t)
'A(t)cos(kx) when 0,a!1]. In Eq.~22!, the base solution
couples to the imposed modulation of the control param
j(t)cos(Qx), and additional modes of wave numberk
6nQ(n integer! are excited. This suggests the following e
pansion of the time dependent solution

c~x,t !5 (
n52`

`

An~ t !cos@~k1nQ!x#, ~23!

where the$An% are random processes in time, and we ant
pate thatAn /An21!1 for smallk. We first truncate the se
ries at unu52. Inserting the resulting expansion in Eq.~22!
and grouping terms according to their periodicity yields t
set of equations
02612
g

-

of
rn
,
n

er

i-

d

dtF A0

A11

A21

A12

A22

G 53
H a2

3

2
cS A0

2

2
1A11

2 1A21
2 1A11A21D J A0

$a2Q2~2k1Q!2%A11

$a2Q2~2k2Q!2%A21

$a216Q2~k1Q!2%A12

$a216Q2~k2Q!2%A22

4
1

j

2F 0 1 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 0 0 0

0 0 1 0 0

GF A0

A11

A21

A12

A22

G 1NL,

~24!

where NL stands for additional nonlinear terms that do
affect the results presented below. Provided thata/Q2uk
6Qu!1 anda/Q2u2k6Qu!1, A0 evolves over a longer
time scale than the other amplitudes, and the reduction
cedure presented above can be used to obtain an approx
solution P(A0,A61,A62)5P(A0)p1(A11,A21uA0)p2(A12,
A22uA11 ,A21 ,A0) to the time-independent Fokker-Planc
equation that results from Eq.~24!. Since the derivation fol-
lows closely that of Sec. II, details are omitted below. As w
the case in the Ginzburg-Landau equation, we assume
scalings k;a;O(e2),A0;O(e),A1;O(e2),A2;O(e3)
and first integrate the Fokker-Planck equation overA12 and
A22. To O(1), this yields an equation for the reduced de
sity p1(A11 ,A21uA0). Its stationary solution on the fas
scale reads,

p1~A11 ,A21uA0!5AQ2~16k42Q4!2

4p2k2A0
4k2

expH 2
~4k21Q2!

8kA0
2k2

3@~2k1Q!2~4k21Q2!A11
2 1~2k

2Q!2~4k21Q2!A21
2

22~4k22Q2!2A11A21#J . ~25!

The conditional probability density ofA11 ~resp.A21) given
A0, but independent ofA21 ~resp.A11) is given by

p6~A61uA0!5E
2`

1`

dA71p1~A11 ,A21uA0!

5A2Q2~2k6Q!2

pkA0
2

3expF2
2Q2~2k6Q!2

kA0
2

A61
2 G . ~26!
0-5
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This expression implies that, to a first approximation,A11
and A21 satisfy the Langevin equationsdA61 /dt
52Q2(2k6Q)2A611jA0/2 that define Ornstein
Uhlenbeck processes. Since the same noisej(t) appears in
the equations forA11 andA21, both variables remain corre
lated andp1(A11 ,A21uA0)5” p1(A11uA0)p2(A21uA0). The
equation satisfied byP(A0) is now obtained by integrating
the original Fokker-Planck equation overA62 and A61.
Keeping terms up toO(e4), we find

052e2
]

]Ā0
H F S āĀ01

k̄

2
D Ā01e2

k̄

4
~^Ā12uĀ0&1^Ā22uĀ0&!

2
3

4
cĀ0

32e2
3

2
c~^Ā11

2 uĀ0&1^Ā21
2 uĀ0&

1^Ā11Ā21uĀ0&!GP~Ā0!J
1e4

]2

]Ā0
2 Fk4 ^~Ā111Ā21!2uĀ0&P~Ā0!G , ~27!

where the scaled variables are defined as in Sec. II.
pressed in the original set of variables, the solution to t
equation reads@to O(e2)#,

P~A0!5d~A02u~a!A4@a1k/2#/3c!, ~28!

whereu(a)51 if a.2k/2 andu(a)50 otherwise.
At this order, the evolution ofA0 is deterministic, with

coefficients that depend on the intensity of the modulati
As was the case in Sec. II, the evolution ofA0 is stochastic at
higher orders ine. At O(e4) we find

P~A0!5NuA0ud exp@2gA0
2#, ~29!

where

d5
4Q2~4k22Q2!2~4k21Q2!

k2~16k41Q4!
S a1

k

2
1

k2~k21Q2!

128Q2~k22Q2!2

2
k2~16k41Q4!

2Q2~4k22Q2!2~4k21Q2!
D ,

and

g5
3cQ2~4k22Q2!2~4k21Q2!

2k2~16k41Q4!

3H 11
k

2Q2 F2~4k21Q2!21~4k22Q2!2

~4k22Q2!2~4k21Q2!
G J .

In order to obtain Eq.~29!, we have used the result^A62&
5kA0/64Q2(k6Q)2 that can be obtained by averaging t
Langevin equations forA62. Our result manifestly break
down whenuku→Q or u2ku→Q, i.e., when the coefficients
a2Q2(2k6Q)2 or a216Q2(k6Q)2 on the right-hand side
02612
x-
t

.

of Eq. ~24! are no longer ofO(1). In that case,A0 andA61
~or A62) evolve over similar time scales and the eliminati
procedure will fail.

The threshold for instability can be again found from t
requirement thatP(A0) be normalizable. In Eq.~29!, this
amounts to requiring thatd.21, a condition that gives as
bifurcation threshold

ac52
k

2
2

k2~k21Q2!

128Q2~k22Q2!2

1
k2~16k41Q4!

4Q2~4k22Q2!2~4k21Q2!
. ~30!

The bifurcation threshold is shifted relative to the determ
istic case by an amount that depends on the intensity of
stochastic modulationk and the wave numberQ.

IV. GINZBURG-LANDAU EQUATION WITH SPATIAL
AND TEMPORAL RANDOMNESS IN THE CONTROL

PARAMETER

We now consider the case in which the control parame
a has a random component in both space and time. We
strict our study to the Ginzburg-Landau equation but exp
a similar analysis to hold for the Swift-Hohenberg equatio
Specifically, we consider the equation

]

]t
c~x,t !5@a1j~x,t !#c~x,t !2cc3~x,t !1

]2

]x2
c~x,t !,

~31!

where c.0 and ^j(x,t)j(x8,t8)&52kd(x2x8)d(t2t8).
Since the stochastic modulation excites a response ov
range of length scales,c(x,t) cannot be adequately de
scribed by a small number of modes as was the case in
vious examples. However, a connection with these ear
cases can be established by introducing a Fourier transf
on a lattice. After discretizing Eq.~31! on a uniform lattice
with N sites and spacingDx, and introducing the discrete
Fourier transform, we find a set ofN equations for the Fou-
rier coefficients

dc̃q

dt
5~a2q2!c̃q2

c

N2 (
k1 ,k2

c̃k1
c̃k2

c̃q2k12k2

1
1

N (
j 50

N21

(
k

j je
i j Dx(q2k)c̃k , ~32!

where c̃q5( j 50
N21ei jqDx, and where the wave numberq can

adopt the valuesq50,62p/NDx,62p/NDx, . . . ,6p/Dx,
and summation overk,k1 andk2 includes all possible wave
vectors within the Brillouin zone. The resulting variance
the noise on the discretized lattice iŝjm(t)jn(t8)&
5(2k/Dx)dm,nd(t2t8). Since c j is real, c̃2k5c̃k* . The

equation forc̃0 is
0-6
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dc̃0

dt
5ac̃02

c

N2 (
k1 ,k2

c̃k1
c̃k2

c̃2k12k2

1 (
j 50

N21
j j

N F c̃012(
k.0

@cos~ jkDx!c̃k
R

1sin~ jkDx!c̃k
I #G , ~33!

whereas the equations for the real and imaginary partsc̃q
R

and c̃q
I (q.0) are,

dc̃q
R

dt
5~a2q2!c̃q

R2
c

N2 (
k1 ,k2

@c̃k1
c̃k2

c̃q2k12k2
#R

1 (
j 50

N21
j j

N
cos~ jqDx!

3H c̃012(
k.0

@cos~ jkDx!c̃k
R1sin~ jkDx!c̃k

I #J ,

~34!

and

dc̃q
I

dt
5~a2q2!c̃q

I 2
c

N2 (
k1 ,k2

@c̃k1
c̃k2

c̃q2k12k2
# I

1 (
j 50

N21
j j

N
sin~ jqDx!

3H c̃012(
k.0

@cos~ jkDx!c̃k
R1sin~ jkDx!c̃k

I #J .

~35!

Near the bifurcationa/ua2q2u!1 for all nonzero wave vec
tors provided thatNDx;O(1). Therefore discretization in
troduces a privileged wave vector,q50, that evolves on a
lower time scale than all others. This is a manifestation of
appearance of order~or a uniform solution! at sufficiently
long times, even in the stochastic case. Therefore the s
tion is analogous to that described in Secs. II and III, and
anticipate a shift in the location of the onset that can
directly attributed to statistical correlation between t
noise and the Fourier amplitudes of the fast variab
(qÞ0). This can be easily shown by averaging out the f
variables from the equation forc̃0. From Eqs.~34! and~35!,
and the Furutsu-Novikov theorem, we find̂c̃k

Rj j&
'(k/NDx) cos(jkDx)c̃0 and ^c̃k

I j j&'(k/NDx)sin(jkDx)c̃0,
leading to

dc̃0

dt
5S a1

k

DxD c̃02
c

N2
c̃0

31j8~ t !c̃0 , ~36!

wherej85( jj j /N, and we have retained only the domina
nonlinear term in Eq.~33!. Equation~36! is the normal form
02612
e

a-
e
e

s
t

t

equation for a pitchfork bifurcation with multiplicative noise
and it is known that the bifurcation threshold occurs wh
the coefficient of the linear term changes sign@23,24#,

ac52
k

Dx
. ~37!

This result is in agreement with Ref.@13#.
We finally mention that it is also possible to use t

adiabatic reduction procedure presented above to de
expressions for the probability densityP($c̃q%)5P(c̃0)p
($c̃q.0

R,I %uc̃0). The calculation, which is similar to that of Se
II, yields the expressions

pq~ c̃q
R,I uc̃0!5E

2`

1`

•••E
2`

1`

)
k5” q

dc̃kp~$c̃k.0
R,I %uc̃0!

5ANDxq2

kc̃0
2p

expF2
NDxq2

kc̃0
2 ~ c̃q

R,I !2G ~38!

for the fast variables, and

P~ c̃0!5Nuc̃0u(NDx/k)(a1k/Dx)21 expF2
Dxc

2kN
c̃0

2G , ~39!

where

N5F Dxc

2kNG (NDx/2k)(a1k/Dx)Y GFNDx

2k S a1
k

DxD G .
The predictions of the reduction scheme have been te

numerically by integrating the Ginzburg-Landau equati
@Eq. ~31!# on a one-dimensional lattice with 128 sites, spa
ing Dx50.1 and periodic boundary conditions. The integ
tion was performed using a first order, explicit algorithm
with time stepDt50.0005. Initial values forc at every lat-
tice site were chosen randomly from a uniform distributi
in the interval@0,0.01#. The numerical results represented
solid circles in Fig. 1 were averaged over 50 independ
runs and correspond to the parameter valuesa50,c51,
and k50.001. The figure showsp(uc̃q

Ru), the probability

density of c̃q
R for any c̃0, i.e., p(uc̃q

Ru)52p(c̃q
R)

54*0
`dc̃0P(c̃0)pq(c̃q

Ruc̃0). The solid lines correspond to
predictions from Eqs.~40! and ~41! for three different wave
numbers. The discrepancy between the two sets of res
increases slightly withq, in spite of the fact that our assump
tion of adiabaticity is in principle more accurate asq in-
creases. The reason is that discretization errors in the num
cal solution become more severe with increasingq. As
shown by the dotted line in Fig. 1, the discrepancy is elim
nated by simply replacing the factorq2 in the expression for
pq(c̃q

Ruc̃0) by 2(2/Dx2)@cos(qDx)21#, the latter expression
being the discrete Fourier transform of the Laplacian ope
tor in the nearest neighbor approximation~the same discreti-
zation used in the numerical integration!.
0-7
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V. DISCUSSION

A reduction procedure similar in spirit to a center ma
fold reduction can be developed for systems in which
control parameter is stochastically modulated provided
the intensityk of the fluctuating component is small. A pe
turbation expansion ink leads to a hierarchy of Fokker

FIG. 1. Order parameter probability distribution functio

p(uc̃q
Ru) obtained either from Eqs.~38! and~39! ~solid lines!, or by

numerical integration of Eq.~31! ~symbols!. Three different values
of q are shown, from top to bottom,q538p/NDx,q516p/NDx
andq58p/NDx. The dotted line is obtained by replacingq2 in the

expression forpq(c̃q
Ruc̃0) by 2(2/Dx2)@cos(q Dx)21#.
y

ta

o,
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Planck equations for conditional probability distribution
that relate components of the order parameter field~e.g.,
Fourier modes! that evolve over different characteristic tim
scales. In the three cases studied, recursive integration o
equations governing the evolution of the conditional pro
ability distribution functions leads to an effective equati
for the evolution of the slowest modeA0.

We show that, depending on the order of the expans
the evolution ofA0 can be either deterministic with reno
malized coefficients~the lowest order!, or stochastic. The
stationary solution for the probabilityP(A0) reveals that the
bifurcation remains sharp~i.e., randomness in the contro
parameter does not lead to an imperfect bifurcation!, but at a
value of the deterministic control parameter that is shifted
an amount proportional tok at lowest order. In addition
statistical moments ofA grow as a power law of the distanc
away from threshold, but with an exponent that depends
plicitly on k.

We finally note that the shift in the location of the bifu
cation threshold originates from statistical correlations
tween the fast variables that are eliminated and the rand
component of the control parameter. For example, in the c
of the Swift-Hohenberg equation, the resultac.2k/2 fol-
lows immediately from the equation forA0 @Eq. ~24!# ne-
glecting terms proportional toA62, and replacingA11j and
A21j by their statistical average. A similar conclusion
reached for the Ginzburg-Landau equation.
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